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Abstract .  
A mathematical model of the finishing mill as an example of a large scale interconnected dynamical system is 

represented. First the system response due to disturbance only is presented. Then,the control technique applied 

to the finishing hot rolling steel mill is the optimal multilevel control using state feedback. An optimal controller 

is developed based on the integrated system model, but due to the complexity of the controllers and tremendous 

computational efforts involved, a multilevel technique is used in designing and implementing the controllers 

.The basis of the multilevel technique is described and a computational algorithm is discussed for the control of 

the finishing mill system . To reduce the mass storage , memory requirements and the computational time of the 

processor, a sub-optimal multilevel technique is applied to design the controllers of the finishing mill . 

Comparison between these controllers and conclusion is presented. 

 

I. INTRODUCTION 
The first step in analysis , design , and 

synthesis of real-life problems is the development of 

a "mathematical model" which can be a substitute of 

the real system .In any modeling two tasks often 

conflicting factors prevail "simplicity"  and 

"accuracy" . On one hand , if a system model is 

oversimplified presumably for computational 

effectiveness , incorrect conclusions may be drawn 

from it in representing the actual system . On the 

other hand a highly detailed model would lead to a 

great deal of unnecessary complications and should a 

feasible solution be attainable, the extent of resulting 

details may become so vast that further 

investigations on the system behavior would become 

impossible with questionable practical values [1]   

[2]. Then it is clear that a mechanism by which a 

compromise can be made between a complex , more 

accurate model and a simple , less accurate model , is 

needed.  

First,  a layout of the strip mill with the function of 

each part is given . Then , from the steady state 

equations of the mill , a mathematical model is 

derived for the three finishing mill stands . In order 

to apply modern control theory to the mill , a state 

space model is obtained . A simplified state space 

model is obtained by approximating the pure delay 

and reducing the order of the system[6] , [7] .  

 

FUNCTIONAL DESCRIPTION OF HOT 

ROLLING STEEL MILL  

The layout of the hot rolling mill under 

consideration is shown in Figure 1 . The steel slabs 

are heated in furnace (1) then transferred to the 

delivery roll table (2). The slab passes the roughing 

descaler (3) to remove scale from its surface . After 

wards , the slab enters the roughing mill (4) , which 

consists of horizontal and vertical rolls, where its 

thickness is reduced . After this stage, it passes the 

cropping shear (5) to cut its front and tail ends. Then, 

it enters the finishing mill train (6) and then passes 

over the run-out roller table (7) . Finally, it enters the 

coiling area (8)  

.

  

 

 
Figure 1  Lay-out of hot strip mill. 
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The main objectives of the automation of steel mills are to increase efficiency, productivity, and product 

quality. As regard to the size of production in steel , it is clear that an increase in production or an improvement 

in the output of only a few percent may represent a very large  increase in profit [3] . The finishing mill is the 

last stage where small reduction in the slab thickness is carried out . This yields that the accuracy of the gauges 

in the finishing stands is directly related to the quality of the products. 

 

II. STATE SPACE MODEL OF THE FINISHING MILL 

  

=AX+BU+ED                                     X(0)=0                                                                                          (1) 

Where : 

X: is 6-dimensional state vector. 

U: is 3- dimensional control vector . 

D: is 2-dimensional disturbance functions . 

X=  [ W1    W2    W3     T1     T2    T3  ]
t
 

 

U= [  ea1     ea2     ea3  ]
t
 

 

D= [ d1     d2 ]
t
 

 

W1  W2  W3  : stands for the angular velocities deviations from operating  values of the three finishing mill 

stands  . 

T1    T2      T3   :stands for the outlet tension deviations from the operating values of the three finishing mill 

stands .  

ea1   ea2   ea3  : stands for the armature voltage deviations from the operating values of the motors controlling the 

three finishing mill stands . 

d1 : deviation of slab temperature from operating value at inlet of mill  no. 1 

d2 :slab thickness at inlet of mill no. 1 

Matrices A,B and E  are given as follows : 
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System response due to the disturbance only (no control): 

 

 
Figure 2 Finishing mill response due to disturbance   d1=0     d2=0.2 

 
Figure 3  Finishing mill response due to disturbance   d1=10     d2=0 

 

 
Figure 4  Finishing mill response due to disturbance   d1=10     d2=0.2 

 
III. OPTIMAL MULTILEVEL CONTROL 

 
The optimal control law takes the form of a state feedback control , where the state X contains all 

pertinent information about the system . There are instances for which the state variables are all measurable, i.e. 

, outputs. If it is not the case, then there are effective means available for estimating or reconstructing the state 

variables (observers) from the available inputs and outputs.  

The necessity of computer solutions has limited real time implementation of optimal control theory in the past 

Still , off-line optimal solutions have provided valuable standards of comparison for evaluating easier-to-
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implement suboptimal control schemes . Off-line solution of the Riccati equation allows optimal feedback 

control matrices to be precomputed . Often , the constant steady state version of the feedback matrices gives 

sufficiently good control [6].  

3.1 OPTIMAL CONTROL  DESIGN 

 
The system is represented in the state form as in equation  (1): 

=AX+BU+ED                                     X(0)=0                                            

 

Then , for optimal performance the following quadratic criteria is introduced 

 

J=1/2   

                                                                                                                                                                     (2) 

Where , < > is the scalar product  

 

<X(t) , Q X(t) > = X
t
(t) Q X(t) 

 

<U(t) , R U(t) > = U
t
 (t) R U(t) 

 

R= is a positive definite weighting matrix for a control. 
Q= is a positive semi definite weighting matrix for the states divided into two parts. 
                Q1: weight for the speed states. 
                Q2: weight for the outlet tension states. 
Then the Riccati equation: 
 

K+ KBR
 – 1

 B
t
 K – Q               K(T) = 0                                                                      (3-a)      

= (KBR
-1

B
t
-A

t
)h+KED                                               h(T) = 0                                                                                 (3-b) 

Then  the optimal control law 

 

U
*
 (t) = - R 

-1
 B

t
  K  X(t) + R

-1
 B

t
  h(t)                                                                                                (4) 

 

where K and h are the feedback and feed forward gains respectively obtained as the solution of Riccati 

equations (3). 

Optimal controllers for applications of such large interconnected dynamic systems are complex and require 

computers with large storage capacity and large computational time , is needed , for solving such systems . In 

the finishing mill system ,even though , the model order used in this paper is the reduced one but we still have : 

 

36 differential equations for the feedback gains k . 

6 differential equations for the feed forward gains h . 

in addition to the system differential equations . 

 

Another alternative control for such systems is the well known multilevel technique control which will be 

applied to control the finishing mill system . 

 

IV. OPTIMAL MULTILEVEL CONTROL DESIGN  [ 8 ] 

 
This technique is used to simplify the design of the controllers for large interconnected dynamical 

systems . First, decompose the system into subsystems with minimum coupling between these subsystems .Then 

, local optimal controllers are derived for each subsystem assuming that all the coupling parameters are known 

( first level control ) . A second level controller is designed to satisfy the goals of the original system , and 

update the coupling variables making use of the information about each subsystem states . The fundamental 

concept of this scheme is to design local controllers to optimize each subsystem ignoring coupling between 

subsystems . Then global optimal controller will be used to minimize the effect of coupling and improve the 
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overall system performance ( second level control). The finishing mill model (1) should be modified by 

rearranging the states X so that each stand will be considered as a subsystem, with states (W,T ) , and control ea 

making the necessary modifications in the A,B and E matrices as follows: 

 

         =AX+BU+ED                                     X(0)=0                                                                                 (5) 

 

X=[ W1   T1 : W2   T2 : W3   T3]
t 

 

U=[ ea1  :  ea2  :  ea3]
t
 

 

 
 

4.1 DESIGN OF OPTIMAL LOCAL CONTROLLERS  (First Level control) 

 

Equation ( 5 ) is composed of three linear subsystems with interconnections and can be described by the 

equation  

     i=Ai Xi+ Bi Ui
L
+ Ei Di   + Ct(t , x)                                  X(0)=0                                                          (6) 

 

Then , by ignoring the interconnections , each subsystem is described as  

 

   i=Ai Xi +Bi Ui
L
+Ei Di                        i = 1 ,2 ,3                                                                                      (7)   

 
For optimality, use the cost function 

 

Ji= 1/2                                                                      (8)    

 

And the optimal local controller : 

 

U
*
i 

L
(t) = - R i 

-1
 B i

 t
  K i  X i (t) + R i

 -1
 B i

 t
  h i (t)                                                                                         (9) 

 

where Ki and hi are the solutions for the Riccati equation for the i
th

 subsystem, namely 

  

 i = -Ki Ai – Ai
t
 Ki+ Ki Bi Ri

-1
 Bit Ki – Qi          Ki (T) = 0 

 

i= (Ki  Bi  Ri
-1

  Bi
t
  – Ai

t
) hi + Ki Ei Di                 hi (T) = 0 
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Each closed-loop subsystem is represented for the i
th

 subsystem as :  

 

i = ( Ai – Bi Ri
-1

 Bi
t
 Ki)Xi + Bi Ri

-1
 Bi

t
 hi + Ei Di                                                                                    (10) 

 

The effect of the coupling between different subsystems will be considered in the second control level . As a 

result of decomposing the system into three subsystems , each subsystem will have an interconnection matrix Ci 

which represents the coupling between the i
th 

subsystem and other subsystems affecting it . Then each 

subsystem after simplification  is expressed as follows : 
 

The First Subsystem 
 

   1= -430 W1 + 4.8 T1 + 3.9 ea1 +0.107 d1-3.6 d2                                                                                (11-a) 
 
 1= -640 W1-97.5 T1+375 W2-3.8 T2+2.44 d1-43.6 d2                            (11-b) 

 
The Second Subsystem  
 

   2= -176 W2 + 2.52 T2 + 3.0T1+2.5 ea2 + 0.026 d1-0.73 d2                                         (12-a) 
 
2= - 630 W2 - 125.6 T2+ 410 W3 - 11 T3 + 103.7T1- 2.37 d1+ 65.2 d2                  (12-b) 

 

The Third Subsystem  
 

   3= -184 W3 + 2.5 T3 – 0.91T1 - 4.052T2+3.7 ea3 - 0.0136 d1+ 0.38 d2                      (13-a) 
 
3= - 630 W3 – 31.1 T3 + 200T1+102.8T2+ 3 d1- 82 d2                             (13-b) 
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4.2 DESIGN OF GLOBAL CONTROLLER ( Second Level Control) 

 

The integrated system corresponding to (7) is represented as follows 

=AdX+BdUT+ED+CX                                       X(0)=0                                                                         (14)  

 

 
where all interconnections between the three subsystems are extracted from matrix A and added in the 

interconnection function  

C(t,X) = C X 

where C is (6*6) constant matrix , and UT(t) is the total control signal:  

 

UT(t)= UL
(t)+Ug

(t)                                                                                                                                         (15) 

The global controller role is to minimize the effect of coupling between the different subsystems , which is 

ignored by the local controllers, i.e. it must minimize the effect of the interconnection function C(t,X)=CX . 

Therefore from ( 14 ) and ( 15 ) the global controller U
g
 can be obtained as follows : 

BU 
g
 = - CX 

But since B is not a square matrix then using the pseudo inverse  

Bt B U g= - Bt CX 
The global controller : 
Ug= - (B

t
 B) 

-1BtCX                                                                                                                                     (16) 
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Using the local control ( 9 ) and the global control (16) then the total control ( 15 ) is obtained as : 

UT=-[R-1 Bt K+(Bt B)-l Bt C]X+R-1 Bt h                                                                                                    (17) 

by substituting ( 17 ) into ( 14 ) the closed-loop system is represented as follows  

 

=[Ad  - Bd R
-1

 B
t
 K - Bd(B

t 
B)

-1
B

t
 C + C] X +B R

-1
 B

t 
h + E D                                                           (18) 

 

4.3 IMPLEMENTATION OF THE MULTILEVEL CONTROL 

 

For the i
th

 subsystem  

 
i = -Ki Ai – Ai

t
 Ki+ Ki Bi Ri

-1
 Bit Ki – Qi          Ki (T) = 0 

 

i= (Ki  Bi  Ri
-1

  Bi
t
  – Ai

t
) hi + Ki Ei Di                 hi (T) = 0 

 

Qi=diag[  q1   q2  ]    

 Ri=r[ I ] 

ql,q2 : weights for Wi and Ti respectively 

 r : weight for the control Ui  

Ai , Bi  , Ei : are the i
th

 subsystem matrices 

 Ki   ,  hi: feedback and feed forward gains of the subsystem respectively .  

 
Optimal Local Controllers ( First Level Controllers) 
 
Ui

*L = -Ri
-1Bi

t Ki Xi + Ri
-1 Bi

t  hi 
Then for the three subsystems the local controllers : 
U1

*L= 3.9/r[-K11W1-K12T1+h1] 
U2

*L= 2.5/r[-K11W1-K12T1+h1] 
U3

*L= 3.7/r[-K11W1-K12T1+h1]] 

Where Kll,Kl2 and hl are obtained for each subsystem as the solution of Riccati equation and using the proper 

A,B and E matrices .  

 

Global Controllers (Second Level Control ) 

 
Ug = - (Bt

 B)
-1

 B
t 
CX 

Then for the three subsystems the global controllers : 
U1

g = 0 
U2

g = 1.2 T1 
U3

g = 0.2457 T1 + 1.1 T2 

Total Control 
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UT = U*L  +Ug 

Then for the three subsystems the total controllers : 
U1T= 3.9/r[-K11W1-K12T1+h1] 
U2T= 2.5/r[-K11W1-K12T1+h1] + 1.2 T1  
U3T= 3.7/r[-K11W1-K12T1+h1]+ 0.2457 T1 + 1.1 T2 

 
4.4 Algorithm of optimal multilevel control: 

 
1.Given K11(T) = K12(T) = K21(T) = K22(T) = 0. 

              h1 (T) = h2 (T) = 0 

for different r , q1, q2 , d1 and d2 solve Riccati equation (K11,K12,K21,K22,h1 and h2)  in backward sequence in 

time using 4
th

 order Runge-kutta method with time increment h=0.001 sec. and reserve K11, K12, K21, K22, h1 and 

h2 as a time sequence from T=tf the final time until T=0. 

 

2- Repeat step 1. For the three different subsystems and reserve Kij and hi gains for each subsystems (off- line) . 

3- Given W1(0) = W2(0) = W3(0) = 0                   (Initial conditions) 

               T1(0) = T2(0) = T3(0) = 0                       ( Initial conditions) 

  Solve the system closed-loop differential equations  in forward sequence in time from T= 0 using the proper 

time sequence of feed back gains Kij and feed forward gains hi. 

4- Use the updated values of the states and the proper data of Kij and hi and solve for the states until system 

reaches steady state. 

5- Plot Wi and Ti versus time for i=1,2,3. 

 

V. SUBOPTIMAL MULTILEVEL CONTROL 

 
          In designing the optimal local controllers for the three subsystems (first level) , the Kij and hi gains solved 

and reserved as a time sequence and used in the proper sequence when solving for the states (optimal design). 

Suboptimal local controllers for the three subsystems are designed such that the steady state values of the Kij 

and hi gains are used in solving for the system states. This will save the computer time and memory required 

since it is not needed to compute and reserve Kij and hi gains from T = tf to T = 0 but until Kij and hi gains 

reach their steady state values , and reserve the steady state values only. 

 

5.1 Algorithm of Suboptimal multilevel control: 
 

1.Given K11(T) = K12(T) = K21(T) = K22(T) = 0. 

              h1 (T) = h2 (T) = 0 

for different r , q1, q2 , d1 and d2 solve Riccati equation (K11,K12,K21,K22,h1 and h2)  in backward sequence in 

time using 4
th

 order Runge-kutta method with time increment h=0.001 sec. and reserve the steady state values of  

K11, K12, K21, K22, h1 and  h2 from T= tf the final time until it reaches its steady state values. 

 

2- Repeat step 1. For the three different subsystems and reserve Kij and hi gains for each subsystems (off- line) . 

3- Given W1(0) = W2(0) = W3(0) = 0                   (Initial conditions) 

               T1(0) = T2(0) = T3(0) = 0                       ( Initial conditions) 

  Solve the system closed-loop differential equations  in forward sequence in time from T= 0 using the proper 

steady state values of feed back gains Kij and feedforward gains hi. 

4- Use the updated values of the states and the proper steady state values  of Kij and hi and solve for the states 

until system reaches settles down. 

5- Plot Wi and Ti versus time for i=1,2,3. 
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Figure 5  Optimal Multi Level Control  d1=0     d2=0.2 

 
Figure 6 Optimal Multi Level Control  d1=10     d2=0 

 
 

 
Figure 7 Optimal Multi Level Control  d1=10     d2=0.2 
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Figure 8 Sub-Optimal Multi Level Control  d1=0     d2=0.2 

 

 
Figure 9 Sub-Optimal Multi Level Control  d1=10     d2=0 

 

 
Figure 10 Sub-Optimal Multi Level Control  d1=10     d2=0.2 

 

VI. CONCLUSIONS 

1. For this type of model, the controller usually 

has both feedback and feedforward 

components. 

2. The disturbance d1 and d2 are affecting all 

system states but they are more effective in 

the tension states  than the speed states .  

3. System response due to disturbance only is 

obtained for the disturbances combinations 

d1=0 , d2=0.2 in Figure 2 and for dl=10 , 

d2=0 in Figure 3  and for dl=10 , d2=0.2  in 

Figure 4  .The system under consideration is 

speed control therefore, speed control loops 

will be designed in all control techniques 

developed and applied to the finishing mill 
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system .  

4 Optimal controllers are complex in 

implementation and maintenance and are 

highly sensitive to parameter variations. 

5 A suboptimal controller which uses the 

steady state values of the K and h gains 

saves the computer time and memory 

required and shows, almost, compatible 

results with the optimal controller. 

6 To modify the K and h gains of the control 

system to cope with certain operational 

requirement, an off- line solution should be 

carried out. 

7 The global controller (coordination) U
g
 is 

not updating the first subsystems local 

controller, that's due to two points, the 

structure of the interconnection matrix Ci 

with the first row and the first column both 

are zeros reflecting the coupling between the 

different subsystems , and the control matrix 

for the first subsystems B1 which reflects the 

fact that the system under consideration is 

speed control . 
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